

US006452167B1

(12) United States Patent Felter

(10) Patent No.: US 6,452,167 B1

(45) **Date of Patent:** Sep. 17, 2002

(54) MINIATURE QUADRUPOLE MASS SPECTROMETER HAVING A COLD CATHODE IONIZATION SOURCE

(75) Inventor: Thomas E. Felter, Livermore, CA (US)

(73) Assignee: Sandia National Laboratories,

Livermore, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/315,001

(22) Filed: May 19, 1999

Related U.S. Application Data

(60) Provisional application No. 60/086,349, filed on May 20, 1998.

(51)	Int. Cl. ⁷		H01J	49/14
------	-----------------------	--	------	-------

(52) **U.S. Cl.** **250/292**; 250/427; 250/423 R

(56) References Cited

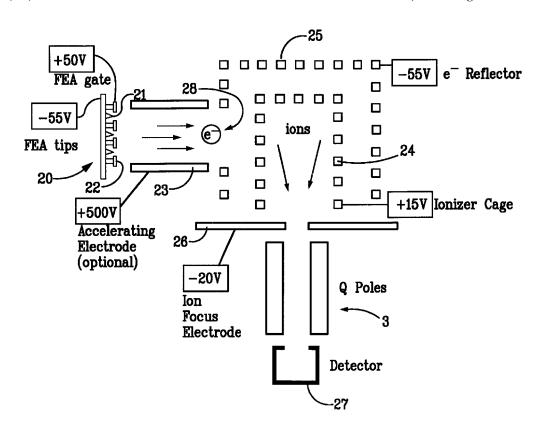
U.S. PATENT DOCUMENTS

3,725,700 A	*	4/1973	Turner 250/41.9 DS
4,221,964 A	*	9/1980	Schlereth et al 250/290
4,272,699 A	*	6/1981	Faubel et al 313/360
5,464,975 A	*	11/1995	Kirchner et al 250/283

OTHER PUBLICATIONS

Austin, W.E.; Holme, A.E.; Leck, J.H.; "The Mass Filter: Design and Performance" *Quadrupole Mass Spectrometry and its applications*, P.H. Dawson (eds.), Elsevier Scientific Publishing Co., Amsterdam 1976, pp. 121–152.

Ferran, R.J.; Boumsellek, S.; "High-pressure effects in miniature arrays of quadrupole analyzers for residual gas analysis from 10^{-9} to 10^{-2} Torr", J. Vac. Sci Technol. (A), vol. 14 No. 3 May/Jun. 1996.


* cited by examiner

Primary Examiner—Kiet T. Nguyen (74) Attorney, Agent, or Firm—Timothy P. Evans

(57) ABSTRACT

An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

12 Claims, 8 Drawing Sheets

